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On the basis of numerical simulation of fiber laser passive mode locking with anomalous dispersion we have
found the dissipative solitons with powerful pedestals having oscillating structure. The pedestal structure
causes a complex structural spectrum. These solitons can be multistable: with the same laser parameters the
pedestals can have different structures. For some nonlinear-dispersion parameters there exist solitons with
asymmetric structural pedestals moving relatively solitons with symmetric ones.
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I. INTRODUCTION

Stable self-localized waves called solitons are one of the
most fascinating nonlinear phenomena. Indeed, they arise
widely in diverse fields of physics �1,2�. For instance, soli-
tons appear in problems of hydrodynamics, plasma physics,
superfluidity, or nonlinear optics including laser passive
mode locking. Among the various nonlinear systems, the
passive mode-locked fiber lasers holds a peculiar place.
Thanks to the possibility to change nonlinear-dispersion pa-
rameters in a very large range, this type of laser systems
provides high potentialities for investigation of diverse soli-
ton properties.

In many cases, the analysis of nonlinear dynamics of soli-
tons, including dissipative solitons in passive mode-locked
fiber lasers, is based on various versions of complex
Ginzburg-Landau equation �CGLE� �3�. The cubic CGLE de-
scribes the passive mode locking with single soliton inside a
laser cavity �4�. The spectral and spatial intensity distribu-
tions of such soliton are symmetric and have bell-shaped
profiles. The inclusion of higher-order nonlinearities results
in multisoliton formation in passive mode locking �5,6�. In
the paper �5� the multisoliton operation was obtained in the
frame of the cubic-quintic CGLE. In the paper �6� it was
used the more complicated version of the CGLE which de-
scribes adequately the nonlinear losses forming ultrashort
pulses due to the nonlinear polarization rotation technique.
Theses solitons in multiple pulse regimes have the same
spectral and spatial parameters that is caused by the effect of
quantization of intracavity radiation into individual identical
ultrashort pulses. The multisoliton operation was experimen-
tally observed in fiber and other lasers. In the case of pulse
attraction, the structures of bound solitons are formed �7,8�.
As a rule, these structures have symmetric spectral and
spatial-intensity profiles. However, with certain laser param-
eters, they can be asymmetric �9�. Such multisoliton struc-
tures with left and right asymmetries move relative to each
other, to symmetric structures, and to the isolated pulses.

In this paper we have found that the individual isolated
solitons in fiber lasers can also have an intrinsic structure. It

is related with the structure of soliton pedestal. The pedestal
structure can depend on initial conditions. This dependence
can be a multivalued function, that is, such isolated soliton is
multistable. The powerful pedestal with structural properties
is realized in the case of anomalous net frequency dispersion
of intracavity fiber medium. In the case of an asymmetric
pedestal, the structural solitons with left and right asymmetry
move relatively each to other, relatively to the symmetric
solitons and to the symmetric soliton structures. Our study is
based on numerical simulation with using the CGLE taking
into account the real characteristics of nonlinear losses in
passive mode-locked fiber lasers with the nonlinear polariza-
tion rotation technique.

In Sec. II we present the model of a passive mode-locked
fiber laser with nonlinear polarization rotation technique.
Here we also present the corresponding equations describing
the soliton dynamics and results of numerical simulation.
The effects of period doubling for intracavity solitons are
typical for passive mode-locked laser models with lumped
nonlinear losses �10�. These effects mask the investigated
phenomena. To preclude this masking, in Sec. III we study
the discussed phenomena in the frame of distributed models
including the model described by cubic-quintic CGLE. Sec-
tion IV is devoted to the discussion of the obtained results.

II. FIBER LASER WITH LUMPED NONLINEAR
LOSSES

A. Physical model and master equations

The passive mode locking in investigated fiber laser is
realized through nonlinear polarization rotation for an intra-
cavity light wave. We use typical parameters for an erbium-
doped fiber laser. Figure 1 shows the studied laser system
which is described in detail in Ref. �6�. This system involves
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FIG. 1. Schematic representation of the investigated laser.
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all necessary elements for the control of nonlinear losses.
After the polarizing isolator the electric field has a linear
polarization. Such state of polarization does not experience
polarization rotation in the fiber because the rotation angle is
proportional to the area of the polarization ellipse. Conse-
quently, it is necessary to place a quarter wave plate 3 ��3
represents the orientation angle of one eigenaxis of the plate
with respect to the laboratory frame�. The rotation of the
polarization ellipse resulting from the optical Kerr nonlinear-
ity is proportional to the light intensity, the area of the polar-
ization ellipse and the fiber length. At the output of the fiber,
the direction of the elliptical polarization of the central part
of the pulse can be rotated towards the passing axis of the
polarizer by the half wave plate 2 �the orientation angle is
�2�. Then this elliptical polarization can be transformed into
a linear one by the quarter wave plate 1 �the orientation angle
is �1�. In this situation the losses for the central part of the
pulse are minimum while the wings undergo strong losses.

The resulting model assumes localized effect for the non-
linear losses due to the Kerr nonlinearity combined with the
phase plates and the polarizer, while gain and group-velocity
dispersion are distributed along the fiber. In dimensionless
form, the final set of equations for the electric field amplitude
is

�E

��
= �Dr + iDi�

�2E

��2 + �G + iq�E�2�E , �1�

En+1��� = − ��cos�pIn + �0�cos��1 − �3� + i sin�pIn

+ �0�sin��1 + �3��En��� , �2�

where E�� ,�� is the electric field amplitude, � is a time co-
ordinate expressed in units �t=���2 �L /2 �here �2 is the
second-order group-velocity dispersion for fiber and L is the
fiber length�, � is the normalized propagation distance ��
varies from 0 to 1 in a roundtrip�, Dr and Di are the fre-
quency dispersions for a gain-loss and for a refractive index,
respectively, q is the Kerr nonlinearity.

The term G in the second parenthesis in Eq. �1� describes
the saturable amplification determined by the total energy of
the intracavity radiation

G =
a

1 + b� �E�2d�

, �3�

where the integration is carried out on the whole roundtrip
period, a is the pumping parameter, b is the saturation one.
The second term in these parentheses is connected with Kerr
nonlinearity of the fiber. Equation �2� determines the relation
between the time distributions of the field before and after
nth pass of radiation through the polarizer �� is the transmis-
sion coefficient of the intracavity polarizer�. The values �1,
�3, �2 are orientation angles of the quarter wave plates 1, 3
and of the half wave plate 2, respectively. Parameters �0, I, p
are determined by relations �0=2�2−�1−�3, I= �E�2, p
=sin�2�3� /3. The amplitude E��� is subject to periodic
boundary conditions with period equal to one roundtrip.

The description of the gain G by Eq. �3� is correct for the
steady-state regimes and for transient process for which the
gain is sufficiently closed to the equilibrium value which is
determined by the equilibrium between the pump and the
light induced depletion of the gain. It is precisely these lasing
operations that are studied in this paper. It is evident that in
the general case �for example, in the case of spike regimes�,
it is necessary to take into account the finiteness of the gain
medium relaxation time �11�.

For numerical simulation we use the standard split-step
Fourier method connected with splitting the nonlinear-
dispersion task into nonlinear and dispersion parts. After
each total pass of resonator the field E��� is transformed with
correspondence with Eq. �2� that is due to the nonlinear
losses in the polarizer. Equations �1�–�3� allow us to deter-
mine the evolution of field in the laser cavity.

B. Results of numerical simulation

Numerical simulation has been performed for typical pa-
rameters of Er-doped fiber laser with the anomalous net dis-
persion of group velocity. As one can see from Figs. 2 and 3
in the case of anomalous dispersion the dissipative soliton
can have the powerful pedestal with oscillating structure in
the temporal distribution of the intensity. This structure
manifests itself as the periodic spectral structure superimpos-
ing on a bell-shaped spectral profile of a standard ultrashort
pulse. The spectral and temporal structures of the soliton are
critical for changes of laser parameters. In the case of Figs. 2
and 3 a small change in the dispersion Di induces drastic
changes in the spectrum and in the pedestal of the ultrashort
pulse. For the used laser parameters, the top part of the soli-
ton is mainly formed by the combined action of focusing
nonlinearity �q�0� and anomalous dispersion �Di�0� of re-
fractive index. The peak intensity is determined by the ori-
entation angles of the intracavity phase plates. The formation
of the pedestal is essentially determined by the nonlinear
losses.

With the same laser parameters the structures of the soli-
ton pedestal can be different. This fact is demonstrated by
Fig. 4. The spectral and temporal distributions in Figs. 4�a�
and 4�b� and in Figs. 4�c� and 4�d� correspond to two soli-
tons with different pedestals which are realized with the
same laser parameters. The realization of one or the other
soliton depends on initial conditions. The transition from one
type of soliton to the other with changing dispersion Di is
determined by an hysteresis phenomena. Figure 5�a� shows
this hysteresis through the dependence of the soliton energy
J on the dispersion Di. With decreasing Di from 1 until 0.92
the soliton energy increases that shows the upper branch of
the dependence J=J�Di� �straight line in Fig. 5�a��. For this
branch the type of soliton corresponds to the one shown in
Figs. 4�c� and 4�d�. In point Di=0.92 the soliton structure
switches towards the structure shown in Figs. 4�a� and 4�b�.
In transient process, during switching, we observed the
period-doubling operation with alternative realization of
these two type of solitons after each pass of radiation
through the laser cavity. With increasing dispersion Di from
0.90 until 0.94 the stationary soliton with the structure shown
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in Figs. 4�a� and 4�b� is realized. After the point Di=0.94 the
soliton energy changes chaotically from one pass of radiation
through the laser resonator to another. In the point Di=0.97
the regime becomes stationary with the soliton structure
shown in Figs. 4�c� and 4�d�. Figure 5�b� demonstrates the
typical dependence J=J�Di� due to effects of period doubling
�12,13�. One can see the regions of Di where the soliton
structure is repeated after two roundtrip periods, after four
ones, and is changed chaotically at each pass of radiation
through the cavity. Here the dependence of energy J on the
number of passes n demonstrates undamped periodical and
chaotic oscillations. As pointed out above, in transient pro-
cess, during switching from the upper branch into the lower
in the dependence J=J�Di� at the point Di=0.92 �see Fig.
5�a��, we observed the similar oscillations with double
roundtrip period, but these oscillations were damped. This
suggests that the undamped oscillations can prevent the real-
ization of stationary solitons with different pedestals. In any
case there is the very large region Di where the effects of
period doubling are realized and this circumstance impedes
to study the dependence of established stationary solitons

with different pedestals on initial conditions. The question
about any suppression of these effects in real experiment will
not be discussed here. To attain this goal in numerical ex-
periment, we will use the models with uniform spatial distri-
bution of nonlinear losses in the next section.

In the case of Fig. 6 the soliton pedestal has not the fine
oscillating structure. In the beginning of the transient process
a symmetric ultrashort pulse is formed. However, the sym-
metric placement of the pulse on the pedestal is unstable.
Depending on initial conditions, the main pulse is shifted to
the leading front or to the trailing edge of the pedestal. The
asymmetric soliton has two stable states: with left and right
asymmetries. The corresponding temporal �spectral� distribu-
tions are transformed one into the other by changing the sign
of the horizontal axis in Figs. 6�c� and 6�d�. The solitons
with different asymmetries move relative to each other, rela-
tive to unstable symmetric isolated solitons, and to stable
symmetric soliton structures. Figure 7 shows the nonelastic
collision of such two solitons with opposite asymmetries.
After the collision the stationary symmetric structure with
two bound solitons is realized.
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FIG. 2. Temporal �a� and spectral �b� distributions of radiation for dissipative soliton in the fiber laser with anomalous net frequency
dispersion of intracavity medium. The change of phase � along the soliton is shown by the dash curve in �a�. The upper right inset in �a�
shows the multiplied soliton pedestal. In all figures we use arbitrary units. a=1.05, q=1, Di=1.1, �0=0.1, �1=−1.74, �3=0.1. Dr is
determined by the amplification medium: Dr=Dr0G, Dr0=0.26.
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FIG. 3. Temporal �a� and spectral �b� distributions for the soliton in the fiber laser with anomalous dispersion with Di=1.0. The other
parameters are the same as in the case of Fig. 2. The change of phase � along the soliton is shown by the dash curve in �a�.
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III. MODELS WITH UNIFORM SPATIAL DISTRIBUTION
OF NONLINEAR LOSSES

In the case of lumped nonlinear losses, the soliton, pass-
ing through the cavity, experiences the impact action of non-
linear losses with a period equal to the roundtrip one. This

periodic action is favorable for a realization of period-
doubling regimes that masks the investigated phenomena.
The existence of different soliton states with closed energies
is also favorable for such regimes. To prevent the masking
action of period-doubling regimes, we used the models with
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FIG. 4. Two types of solitons with different temporal �a�, �c� and spectral �b�, �d� distributions which are realized with the same laser
parameters. a=1.32, Di=0.935, Dr=0.05, �3=0.11. The other parameters are the same as in the case of Fig. 2.
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FIG. 5. Energy of the soliton J after its every passage through the laser cavity as a function of the dispersion Di presented on enlarged
�a� and reduced �b� scales. The laser parameters are presented in Fig. 4. The chaotic fragment of the dependence in �a� is connected with the
down part of the hysteresis loop.
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uniform spatial distribution of nonlinear losses.
From Eq. �2� we obtain

In+1��� = �2�cos2��1 − �3� − cos 2�1 cos 2�3 sin2�pIn

+ �0��In��� . �4�

This nonlinear transmission of the radiation through the po-
larizing isolator could be modeled by the following distrib-
uted nonlinear losses �−	0+	 sin2�pI+�0�� where 	0, 	, p,
�0 are independent parameters determining these losses, 	

	0. Correspondingly, the master equation has the follow-
ing form:

�E

��
= �Dr + iDi�

�2E

��2 + �G + iq�E�2 − 	0 + 	 sin2�pI + �0��E .

�5�

This is the model equation describing adequately at qualita-
tive level many properties of passive mode-locked fiber la-
sers.

Figure 8 demonstrates the multistability of the single soli-
ton regime. With the same laser parameters we observed the
five different isolated solitons having different pedestal struc-
tures and spectral distributions. Each of these solitons is sta-
tionary. After transient process its spectral and temporal dis-
tributions do not vary with increasing number of passes of
radiation through the laser cavity. The realization of one or
the other type of a stationary soliton depends on initial con-
ditions.

Figure 9 demonstrates the regime of the asymmetric iso-
lated soliton obtained in the frame of the distributed model
described by cubic-quintic CGLE,

�E

��
= �Dr + iDi�

�2E

��2 + �G − 1 + �p + iq��E�2 + �p̃ + iq̃��E�4�E .

�6�

The formation of the top part of the soliton shown in Fig. 9
is mainly related with the frequency dispersion Di and the
quintic nonlinearity q̃ of refractive index of intracavity me-
dium. This asymmetric soliton in its properties is similar to
the asymmetric one shown in Fig. 6, nevertheless there are
significant differences. This circumstance is discussed below.
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FIG. 6. Symmetric temporal �a� and spectral �b� distributions for the dissipative soliton establishing in the beginning of the generation
�=100. Because of the instability of symmetric soliton, after transient process the ultrashort pulse with asymmetric temporal �c� and spectral
�d� distributions is realized. a=1.2, q=2, Di=0.13, Dr=0.001, �=0, �1=−1.64, �3=0.2.
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FIG. 7. Nonelastic collision of asymmetric solitons. a=1.26, the
other parameters are the same as in the case of Fig. 6.
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IV. DISCUSSION

In the frame of the model described by the cubic CGLE
�Eq. �6� with p̃=0, q̃=0�, the steady-state soliton amplitude
is determined by the expression �see, for example, �4��

E��� =
E0

cosh1+i�����
, �7�

where E0, �, � are the constants determining the peak am-
plitude, the inverse duration, and the chirp of the ultrashort
pulse, accordingly. The phase change � along the pulse is

���� = − � ln cosh���� . �8�

Correspondingly, the change of local frequency �� �detuning
of the local frequency from the center of the spectral ampli-
fication band� along the soliton is determined by the expres-
sion

����� = �̇��� = − �� tanh���� . �9�

The amplitude maximum places in the point �=0. Here the
phase is stationary �̇=0, the detuning from the center of the
frequency amplification band is equal to zero ��=0, and the
amplification is maximum. With increasing ���, the detuning
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FIG. 8. Temporal I= I��� and spectral I�= I���� distributions for the five different solitons realizing with the same laser parameters in a
single pulse operation. Realization of one or other soliton depends on initial conditions. a=1, q=1, Di=1, Dr=0.05, 	0=1, 	=0.9, p
=0.1, �0=−0.2.
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increases and the amplification falls. In the case of anoma-
lous dispersion Di�0, the phase modulations due to the fo-
cusing nonlinearity q�0 and the frequency dispersion of
refractive index compensate for each other if Di /Dr=q / p
�14�. In this case �=0, the phase compensation is realized
along total soliton. Such global phase compensation is pos-
sible thanks to chosen nonlinear-dispersion parameters of the
laser systems �using of the model described by the cubic
CGLE�. If the nonlinear losses have any more complicated
dependence on an intensity than the linear one the phase
compensation is possible only in two symmetric points on
wings of a soliton. In these points the phase is stationary
��̇=0�. It means that detuning of carrier frequency from the
center of the gain band for these points is equal to zero and
the amplification is so efficient as in the soliton center, which
is the point of the stationary phase. It is precisely the situa-
tion that is realized in our numerical experiment �see the
phase dependence in Figs. 2 and 3�. Such effective amplifi-
cation at the soliton wings is one of main reasons of power-
ful soliton pedestals obtained in our numerical experiment.

Notice the limitation of the peak soliton intensity due to
intracavity phase plates is also favorable for the realization
of powerful pedestals with increasing pumping a. In this
case, because of the peak intensity limitation, the pump en-
ergy is transformed into the additional pedestal energy. In
addition, the wide spectral amplification band DrDi is fa-
vorable for the realization of intrasoliton structures.

As mentioned above, the top part of the soliton and its
pedestal are formed by different mechanisms. The former is
mainly shaped by the combined action of the focusing non-
linearity and the anomalous dispersion of refractive index.
The latter is formed also by the nonlinear losses. The differ-
ent mechanisms of shaping determine the essentially differ-
ent profiles of these fragments of the soliton. The main part
of the soliton through the boundary continuity conditions
dictates the phase � and its change rate �̇ in the pedestal.
Since the dictated chirp �̇, as a rule, does not correspond to
the equilibrium one of the pedestal, then the oscillation in the
pedestal chirp is realized. This chirp oscillation results in the
intensity oscillation in the pedestal. By such way the oscil-
lating pedestal structure is realized. When the oscillation pe-

riod becomes of the order of the pedestal length, because of
a competition, the soliton pedestal wings turns out with dif-
ferent amplitudes, and the soliton becomes asymmetric. The
frequency chirp determines the elastic properties of the soli-
ton. Thanks to weak frequency chirp of pedestals, free soli-
tons transform easily into bound solitons �see Fig. 7�. Be-
cause of the powerful pedestal wings the bound energy turns
out large. That is, the boundary solitons are very stable struc-
tures.

Parameters of dissipative solitons are usually determined
by parameters of a laser system. Here we have found that
soliton parameters can essentially depends on initial condi-
tions. With the same laser parameters the different isolated
solitons can be realized �see Fig. 8�. Such multistability is
due to the nonlinear properties of the investigated system.
Thus, one can say about inherent structure of such dissipa-
tive solitons. It should be pointed that the qualitative corre-
spondence of Figs. 2 and 3 to Fig. 8 lends support to the
validity of the use of Eq. �5� for the description of passive
mode locking in fiber lasers.

It should be noted that the pedestals of the asymmetric
solitons shown in Figs. 6�c� and 9�a� are considerably differ-
ent. The former is obtained from Eqs. �1� and �2�, the latter is
obtained from the cubic-quintic CGLE �6�. This means that
the use of the cubic-quintic CGLE must be done with some
caution. The expansion of the nonlinear losses in a Taylor
series assumes that a next term of the expansion is small in
comparison with a previous one. In the case of the realization
of asymmetric pedestals in the frame of Eq. �6�, this condi-
tion turns out to be violated: with the used parameters of the
cubic-quintic CGLE the cubic term is less than the quintic
one. If we shall attempt to fulfill this condition then this
means the following. The soliton is formed mainly by the
cubic nonlinearity, and the quintic nonlinearity modifies only
slightly the top of the soliton for which the quintic term in
the CGLE has a maximum value. As this takes place, the
soliton pedestal does not change practically because of fast
decrease of the quintic term with decreasing intensity. Thus,
the CGLE is not suitable for any analysis of the solitons with
structural pedestals. Note, in the frame of the cubic-quintic
CGLE the authors of the paper �15� obtained the symmetric
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FIG. 9. Temporal and spectral distributions for the soliton obtained in the distributed model described by cubic-quintic CGLE. a=1.5,
Di=1, Dr=0.2, p=10−2, q=−10−2, p̃=−10−4, q̃=1.1�10−4.
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and asymmetric solitons only with the structural top. These
solitons were named composite solitons and the moving
ones, respectively. The cubic-quintic CGLE with the addi-
tional term proportional to the fourth derivative of field am-
plitude with respect to time �the complex quintic Swift-
Hohenberg equation� can also demonstrate the many-valued
dependence of the structure of established soliton on initial
condition in the case of Eq. �5� �16�. However, this structure
is only the structure of the soliton top, but not the pedestal, in
agreement with the reasons presented above.

It should be noted that similar results on the soliton spec-
tra with complex structure were reported in papers �17,18�.
The structure of spectra were explained by period-doubling
effects and by constructive interference between the soliton
and the dispersive waves. These dispersive waves are emit-
ted by the soliton when it circulates in the laser cavity and
periodically experiences perturbations caused by the intrac-
avity components. For solitons shown in Fig. 8 these mecha-
nisms do not work, since the solitons are stationary and in
the current model the intracavity medium has spatially uni-
form distribution, correspondingly the dispersive waves are
not emitted. In our case the complicated structural spectra are
connected with powerful structural pedestals of solitons.
Such pedestals are due to specific intensity-dependent

nonlinear losses arising in passive mode-locked fiber lasers
exploiting nonlinear polarization rotation technique.

V. CONCLUSION

We found that in the passive mode-locked fiber lasers
with anomalous dispersion the dissipative solitons with pow-
erful structural pedestals can be realized. Such pedestal
structures cause the complicated structural spectrum. The
pedestal structure of steady-state single solitons can have a
many-valued dependence on initial conditions: with the same
laser parameters, the solitons with different pedestal struc-
tures are realized. In the case of pedestals without any fine
structure, the solitons become asymmetric. The solitons with
right and left asymmetric spectrum and temporal intensity
distribution of the field move relative to each other and rela-
tive to symmetric bound and single solitons. The powerful
pedestals of single solitons result in bound solitons with a
large bound energy.
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